User Manual Original Instructions

Guard Locking with Time-Delay (GLT) Safety Relay

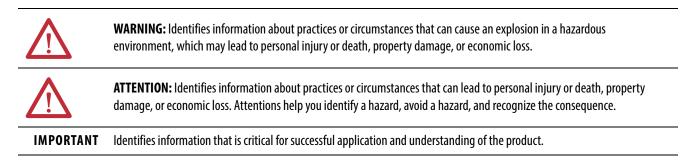
Catalog Number 440R-GL2S2T

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.


In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).

Preface	Summary of Changes5Who Should Use This Manual5Purpose of This Manual5Additional Resources5Definitions6
	Chapter 1
Overview	Hardware Features7Functions7Function 1 - Guard Locking7Function 2 - E-stop8
	Chapter 2
Installation	Mounting Dimensions.9DIN Rail Mounting and Dismounting9Removable Terminals10Enclosure Considerations10Prevent Excessive Heat11
	Chapter 3
Power, Ground, and Wire	Wiring Requirements and Recommendation13Wire Size13Terminal Torque13Terminal Assignments14Grounding the Controller14Connecting a Power Supply15Safety Devices16Safety Devices with Mechanical Contacts16Safety Devices with OSSD Outputs17Unlock Request Input18Lock and Reset Request Input18Lock and Unlock Signals19Retriggerable Input19Outputs20Use Surge Suppressors21Single Wire Safety (SWS)21SWS Function22SWS Connections22

	Chapter 4
Configuration	Logic Switch Setting
	Range Switch Setting
	Time Switch Setting
	Configuration Switches
	Configuration Process
	Five Step Configuration
	Configuration Details
	Chapter 5
Diagnostic Status Indicators and	Status Indicators During Powerup
Troubleshooting	Status Indicators During Normal Operation
	Status Indicators During Diagnostics
	Additional Diagnostics
	Chapter 6
Pulse Testing Functions	Pulse Testing for Inputs
	Pulse Testing of Outputs
	Appendix A
Specifications	General
•	Environmental
	Inputs IN1
	Lock Unlock Request
	Retrigger
	Outputs
	Lock Unlock Signals
	Auxiliary Signal
	Single Wire Safety Input Signal
	Single Wire Safety Output Signal
	Recovery Times
	Response Times
	Appendix B
Regulatory Approvals	Agency Certifications
	Compliance to European Union Directives
	Machine Safety Directive
	SIL Rating
	Performance Level/Category
	EMC Directive
	Index

	Read this preface to familiarize yourself vinformation concerning:	vith the rest of the manual. It provides
	• Who should use this manual	
	• The purpose of this manual	
	Related documentation	
	• Conventions that are used in this	manual
Summary of Changes	This manual contains the following new The section <u>Single Wire Safety (S</u> 	-
	• In the section <u>Status Indicators D</u> descriptions of Green with Flashin Flashing Red 4 Times were update	ng Red 3 Times and Green with
Who Should Use This Manual	Use this manual if you design, install, pro systems that use the GLT safety relay.	ogram, or troubleshoot control
	You must have a basic understanding of o safety-related control systems. If you do using this product.	
Purpose of This Manual	This manual is a reference guide for the accessories. It describes the procedures the troubleshoot your controller. This manu	nat you use to install, wire, and
	• Explains how to install and wire y	
	• Gives an overview of the GLT safe	
Additional Resources	These documents contain additional info from Rockwell Automation.	ormation concerning related products
	Resource	Description
	Industrial Automation Wiring and Grounding Guidelines, publication <u>1770-4.1</u>	Provides general guidelines for installing a Rockwell Automation® industrial system.
	Product Certifications website, <u>http://www.ab.com</u>	Provides declarations of conformity, certificates, and other certification details.
	Allen-Bradley [®] Industrial Automation Glossary, <u>AG-7.1</u>	A glossary of industrial automation terms and abbreviations.

You can view or download publications at <u>http://www.rockwellautomation.com/literature/</u>. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

Definitions

The Industrial Automation Glossary (<u>publication AG-7.1</u>) contains a glossary of terms and abbreviations that are used by Rockwell Automation to describe industrial automation systems. The following list of specific terms and abbreviations that are used in this manual:

- N.C. (Normally Closed) An electrical contact whose normal state (that is, no pressure or electrical potential applied) is in the closed position.
- N.O. (Normally Open) An electrical contact whose normal state (that is, no pressure or electrical potential applied) is in the open position.
- **Reaction Time** Describes the time between the true states of one input to the ON state of the output.
- **Recovery Time** Describes the time that is required for the input to be in the LO state before returning to the HI state.
- **Response Time** Describes the time between the trigger of one input to the OFF state of the output.
- OSSD (Output Signal Switching Device) A pair of solid-state signals that are pulled up to the DC source supply. The signals are tested for short circuits to the DC power supply, short circuits to the DC common and shorts circuits between the two signals.
- Single Wire Safety (SWS) A unique, safety rated signal that is sent over one wire to indicate a safety status. The SWS can be used in Category 4.

Overview

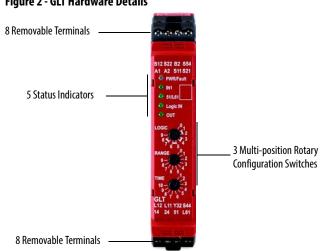
Hardware Features

The GLT is a Guard Locking with Time-delay safety relay. This safety relay is designed to use time-delayed outputs for use in Stop Category 1 and to unlock a safety gate when the time expires. It also provides a lock command to lock a safety gate before the starting of the hazard.

The GLT safety relay can be operated with other safety relays in the GSR family, by use of the single wire safety (SWS) connection. When GLT safety relay receives an SWS signal from other GSR relays, the GLT safety relay issues an Unlock command. When the GLT safety relay turns ON its safety output, it also turns ON its SWS output for use by other GSR safety relays.

Functions

The GLT safety relay can be configured to operate in one of two types of safety functions, both of which involve time-delayed safety signals.


Function 1 - Guard Locking

Function 1 is used for guard locking applications. During production, the safety gate is locked in the closed position by a guard locking interlock. To request access through the safety gate, the operator presses the Unlock Request button. The GLT safety relay initiates a stop and unlocks the safety gate after the time expires.

Function 2 - E-stop

Function 2 is used for E-stop applications. The production process requires an orderly shutdown. Some processes must be stopped immediately and some must be stopped shortly thereafter. To initiate the stop, you press an E-stop button. The GLT safety relay initiates an immediate stop command followed by a delayed stop command.

Figure 2 shows some of the key hardware features of the GLT safety relay.

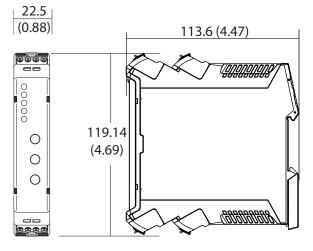
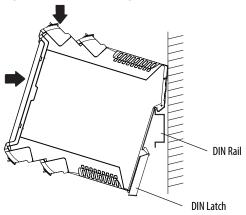


Figure 2 - GLT Hardware Details

Installation

Mounting Dimensions

Figure 3 - Approximate Dimensions [mm (in.)]



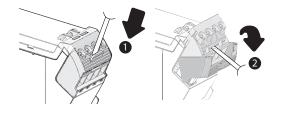
DIN Rail Mounting and Dismounting

The GLT safety relay easily mounts onto 35 mm DIN Rails: 35x7.5x1 mm (EN 50022 - 35x7.5).

- 1. Hold the top at an angle
- 2. Slide down until the housing catches the rail.
- 3. Swing the bottom down and give a little push until the latch clips onto the rail.

Figure 4 - DIN Rail Mounting

Removal - To remove the GLT safety relay, use a screwdriver to pry the DIN rail latch downwards until it is in the unlatched position. Then, swing the module up.


Spacing - The GLT safety relay can be mounted directly next to other GSR safety relays. When the GSR Ethernet Module is used, the GSR must be mounted with 10 mm (0.4 in.) of its neighboring module to maintain effective communication.

Maintain 50.8 mm (2 in.) of space above and below the relay for adequate ventilation.

Removable Terminals

The GLT safety relay has removable terminals to ease wiring and replacement.

Figure 5 - Removable Terminals

- 1. Insert the tip of a small screwdriver into the slot near the terminal screws.
- 2. Rotate the screwdriver to unlock the terminal block.

The terminal block can then be removed from the housing.

Enclosure Considerations

Most applications require installation in an industrial enclosure to reduce the effects of electrical interference and environmental exposure. Pollution Degree 2 is an environment where normally only non-conductive pollution occurs except that condensation occasionally causes temporary conductivity. Overvoltage Category II is the load level section of the electrical distribution system. At this level, transient voltages are controlled and do not exceed the impulse voltage capability of the products insulation.

This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC 60664-1), at altitudes up to 2000 m (6562 ft) without derating. This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR 11. Without appropriate precautions, there may be difficulties with electromagnetic compatibility in residential and other environments due to conducted and radiated disturbances. This equipment is supplied as open-type equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that are present and appropriately designed to help prevent personal injury that results from accessibility to live parts. The enclosure must have suitable flame-retardant properties to help prevent, or minimize, the spread of flame, and comply with a flame spread rating of 5VA, V2, V1, V0 (or equivalent) if non-metallic. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication contain additional information regarding specific enclosure-type ratings that are required to comply with certain product safety certifications.

For additional information, see:

- Industrial Automation Wiring and Grounding Guidelines, Rockwell Automation publication <u>1770-4.1</u>, for additional installation requirements.
- NEMA Standard 250 and IEC 60529, as applicable, for explanations of the degrees of protection that is provided by different types of enclosure.

Prevent Excessive Heat For most applications, normal convective cooling keeps the relay within the specified operating range. Verify that the specified temperature range is maintained. Proper spacing of components within an enclosure is usually sufficient for heat dissipation.

In some applications, other equipment inside or outside the enclosure produce a substantial amount of heat. In this case, place blower fans inside the enclosure to help with air circulation and to reduce "hot spots" near the controller.

Additional cooling provisions could be necessary when high ambient temperatures are encountered. Do not bring in unfiltered outside air. Place the controller in an enclosure to help protect it from a corrosive atmosphere. Harmful contaminants or dirt could cause improper operation or damage to components. In extreme cases, you may need to use air conditioning to help protect against heat buildup within the enclosure.

Notes:

Power, Ground, and Wire

Wiring Requirements and Recommendation

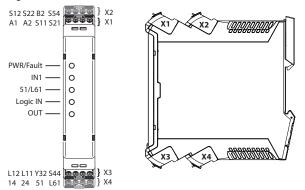
WARNING: Before you install and wire any device, disconnect power to the system.

WARNING: Calculate the maximum possible current in each power and common wire. Observe all electrical codes that dictate the maximum current allowable for each wire size. Current above the maximum ratings cause wiring to overheat, which can cause damage.

- Allow for at least 50 mm (2 in.) between I/O wire ducts or terminal strips and the relay.
- Route incoming power to the relay by a path separate from the device wiring. Where paths must cross, their intersection must be perpendicular.
- Do not run signal or communications wiring and power wiring in the same conduit. Route wires with different signal characteristics by separate paths.
- Separate wiring by signal type. Bundle wiring with similar electrical characteristics together.
- Separate input wiring from output wiring.
- Label wiring to all devices in the system. Use tape, shrink-tubing, or other means for to label wires. Colored insulation can also be used to identify wiring by signal characteristics. For example, use blue for DC wiring and red for AC wiring.

Wire Size

Each terminal can accommodate copper wire with size from 0.2...2.5 $\rm mm^2$ (24...14 AWG). Use copper that withstands 60/75 °C.


Terminal Torque

Terminals must be torqued to 0.4 N•m (4 lb•in).

Terminal Assignments

Some terminals are designed to have one specific function. Some terminals can perform multiple functions; these terminals must be configured during a power-up routine.

Figure 6 - Terminal Identification

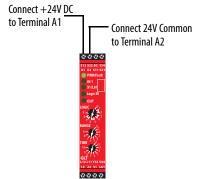
Table	1-	Terminal	Function
-------	----	----------	----------

Terminal	Function	
A1	+24V Supply	
A2	24V Common	
S11	Safety Test Pulse Output for Channel 1	
S21	Safety Test Pulse Output for Channel 2	
S12	Safety Input for Channel 1	
S22	Safety Input for Channel 2	
S44	Reset and Lock Request Input	
S54	Guard Locking Unlock Request Input	
Y32	Auxiliary Nonsafety Output	
L11	Single Wire Safety Output	
L12	Single Wire Safety Input	
B2	Retriggerable Input	
51	Guard Locking Solenoid or Delayed Safety Output Channel 1	
L61	Guard Locking Solenoid or Delayed Safety Output Channel 2	
14	Immediate Safety Output Channel 1 - Logic Setting 1, 2, 5, 6, 7, 8 Delayed Safety Output Channel 1 – Logic Setting 3, 4	
24	Immediate Safety Output Channel 2 - Logic Setting 1, 2, 5, 6, 7, 8 Delayed Safety Output Channel 2 – Logic Setting 3, 4	

Grounding the Controller

There are no special grounding requirements. Terminal A2 must be connected to the common of a 24V supply.

Connecting a Power Supply


Power for the GLT safety relay is provided by an external 24V DC power supply source.

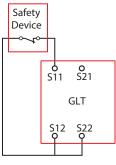
To comply with the CE Low Voltage Directive (LVD), power for the GLT safety relay must come from a DC source compliant with safety extra low voltage (SELV) or protected extra low voltage (PELV).

The following Rockwell Automation Bulletin 1606 power supply catalog numbers are SELV- and PELV-compliant.

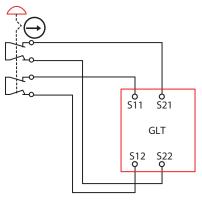
- 1606-XLP30E
- 1606-XLP50E
- 1606-XLP50EZ
- 1606-XLP72E
- 1606-XLP95E
- 1606-XLDNET4
- 1606-XLSDNET4

Figure 7 - Power Supply Connections

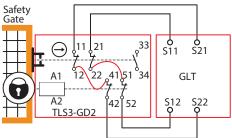
Safety Devices


Safety Devices with Mechanical Contacts

Input devices with mechanical contact outputs, such as emergency stop buttons and tongue interlock switches, use both a safety input terminal and a test pulse output terminal.

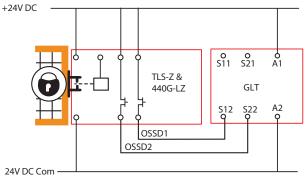

When safety devices are connected via test outputs to an input circuit on the GLT safety relay, wire length must be 100 m (300 ft) or less.

For the lowest risk levels, the input device uses one channel. As shown in <u>Figure 8</u>, one side of the contact is connected to S11 (or S21). The other side of the contact must be connected to both S12 and S22. The GLT safety relay detects short circuits from the inputs (S12 and S22) to 24V DC and to 24V common.



When only one dual-channel E-stop button is used, the maximum safety performance rating is Cat 4 PLe and SIL CL3.

Since the TLS3-GD2 interlock switch has multiple contacts in series, the maximum safety performance rating is Cat 3 PLd and SIL CL2.


TIP Pulse test output S11 can be connected to either S12 or S22. Pulse test output S21 can be connected to either S12 or S22.

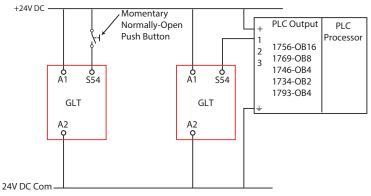
Regardless of how these switches are wired, performance remains the same. The GLT safety relay successfully recognizes when one or both channels open, and the GLT safety relay detects cross channel faults and single channel faults to +24V and to 24V common.

Safety Devices with OSSD Outputs

Devices, such as light curtains, laser scanners, and solid-state interlocks have current-sourcing PNP semiconductor outputs (OSSD), which send safety signals to the GLT safety input terminal and do not use the pulse test outputs. These devices must have a common power supply reference with the GLT safety relay.

IMPORTANT Both devices must have the same power supply reference.

TIP OSSD1 can be connected to either S12 or S22 and OSSD2 can be connected to either S12 or S22.

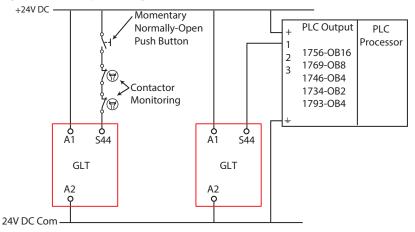

When using the TLS-ZR and 440G-LZ guard locking switches, the maximum safety performance rating is Cat 4 PLe and SIL CL3.

Unlock Request Input

The Unlock Request Input can be connected to the 24V supply through a momentary, normally open push button switch or to a 24V sourcing output of a programmable logic controller (PLC), where the PLC turns the request ON or OFF. Some examples of Rockwell Automation PLC output modules are shown in Figure 12.

The unlock request is connected to Terminal S54.

Figure 12 - Unlock Request Wiring


Lock and Reset Request Input

The Lock and Reset Input can be connected to the 24V supply through a momentary, normally open push button switch or to a 24V sourcing output of a PLC where the PLC turns the request ON or OFF. Some examples of Rockwell Automation PLC output modules are shown in Figure 13.

In some safety system applications, the reset signal also serves as a monitoring function. For example, when the safety outputs are driving safety contactors, the normally closed contacts of the safety contactors should be connected in series with lock and reset circuit.

The lock and reset request is connected to Terminal S44.

Figure 13 - Lock Request Wiring

Lock and Unlock Signals

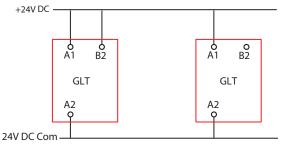
The GLT safety relay is designed to ignore incidental actuations or stuck conditions on the Lock and Unlock inputs. The lock and unlock signals must be actuated for a duration of 0.25...3 seconds. The GLT safety relay ignores signals durations that are too short or too long.

Figure 14 - Required Signal Duration

+24V DC

Retriggerable Input

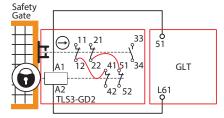
The retriggerable input is either left open for non-retriggerable operation or connected directly to the +24V DC supply for retriggerable operation. During configuration, the GLT safety relay reads the status of the input to determine whether to apply the function to the safeguarding input. The retriggerable input only works with Logic Setting 5, 6, 7, and 8. Retriggerable operation is often used when long delay times are configured in the GLT safety relay.


When terminal B2 is not connected to +24V DC, the safeguarding input device must be held open for the full duration of the timed delay cycle. If the input device is reclosed during the timing cycle, the PWR/Fault indicator is green with five red flashes. To clear the fault indication, cycle the input device (OFF then ON) after the completion of the timing cycle.

When terminal B2 is connected to +24V DC, the safeguarding input device can be closed before the full duration of the timed delay cycle, and this action resets the timer. When the input is reclosed during the timing cycle, the immediate outputs turn back ON immediately

WARNING: You must confirm that the reclosing or resetting of an interlocking safeguard or E-stop device does not initiate hazardous machine operation.

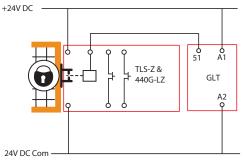
Figure 15 - Retriggerable Input Wiring


Outputs

Terminals 51 and L61 are the time-delayed safety outputs. They can be configured for two different functions:

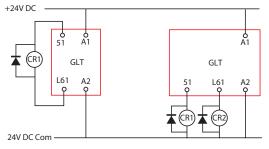
- 1. Direct connection to the solenoid of a guard locking interlock, or
- 2. Direct connection to other time-delayed safeguarding devices.

The function is determined during the configuration process.


Figure 16 - TLS1, 2, and 3 Solenoid Connections

When using the TLS1, 2, or 3, the solenoid connections can be reversed, A1 can be connected to 51 or L61 and A2 can be connected to either 51 or L61.

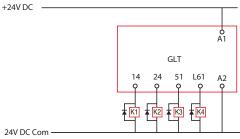
Note: The 440G-MT solenoid cannot be connected directly to the GLT safety relay as it draws too much current; an interposing relay is required.


Figure 17 - TLS-Z and 440G-LZ Solenoid Connections

When connecting to the TLS-Z or 440G-LZ guard locking switch, the solenoid signal must be connected to terminal 51. Terminal L61 can also be used to drive a relay.

When multiple guards (solenoids) must be unlocked simultaneously, a safety control relay can be connected between terminal 51 and L61 or two separate safety control relays can be connected to 51 and L61. A diode suppressor should be connected in parallel across the coil.

Figure 18 - Interposing Relay Connections



Use Surge Suppressors

Because of the potentially high current surges that occur when switching inductive load devices, such as motor starters and solenoids, the use of some type of surge suppression to help protect and extend the operating life of the controllers output is required. By adding a suppression device directly across the coil of an inductive device, you prolong the life of the outputs. You also reduce the effects of voltage transients and electrical noise from radiating into adjacent systems.

The following diagram shows an output with a suppression device. We recommend that you locate the suppression device as close as possible to the load device. Since the outputs are 24V DC, we recommend 1N4001 (50V reverse voltage) to 1N4007(1000V reverse voltage) diodes for surge suppression for the OSSD safety outputs, as shown in Figure 19. The diode must be connected as close as possible to the load coil.

Example suppressors include:

- Catalog number 100-FSD250 for legacy Bulletin 100S Contactors
- Catalog number 100S-C**EJ contactors have built in suppression
- Catalog number 1492-LD4DF terminal block with built-in 1N4007 diode
- Catalog number 700-ADL1R is diode for catalog number 700-HPSXZ24 positive-guided relay

Single Wire Safety (SWS)

The GLT safety relay has two single wire safety connections:

- Terminal L12 (input)
- Terminal L11 (output)

These terminals can only be connected to other devices that support single wire safety. When the SWS input is ON, the Logic IN indicator turns ON.

SWS Function

The configured Logic switch setting determines the function of the SWS input.

- Logic 1 and 3 The Logic IN bypasses the IN1 signals. If the safety gate is unlocked (IN1 is OFF), the SWS input turns on the 14/24/L11/Y32 outputs.
- Logic 2 and 4 The SWS input must be ON to turn on the 14/24/L11/Y32 outputs. Turning off the SWS input is similar to pressing the Unlock request.
- Logic 5

The SWS input bypasses the IN1 signals. If the safety gate is unlocked (IN1 is OFF), the SWS input sets the GLT safety relay ready for reset (the OUT indicator is blinking).

• Logic 6

The SWS input must be ON to turn on the outputs. If IN1 is ON, and the SWS input turns off; then 14, 24, L11, and Y32 turn off immediately and 51 and L61 turn off after a delay. If IN1 is ON and the SWS input turns on, the GLT safety relay is ready for reset (the OUT indicator is blinking).

• Logic 7

The SWS input bypasses the IN1 signals. If the safety gate is unlocked (IN1 is off), the SWS input turns on all outputs immediately.

• Logic 8

The SWS input must be ON to turn on the outputs. If IN1 is ON and the SWS IN turns off, then 14, 24, L11, and Y32 turn off immediately and 51 and L61 turn off after a delay. If IN1 is ON and the SWS input turns on all outputs immediately.

SWS Connections

There can be many variations and combinations of series and parallel connections of the SWS. Each L11 terminal can be connected to up to ten L12 terminals.


ATTENTION: Do not connect two or more L11 terminals together.

Figure 20 shows an example wiring diagram with SWS input from a GSR DI safety relay and SWS output connection to a GSR EM expansion in parallel with a GSR DIS relay. The safety relays must have a common power reference (24V common).

ATTENTION: Do not use machine ground as the 24V common; connect the commons of multiple power supplies using direct wire connections.

Figure 20 - Single Wire Safety Connections

<u>Figure 21</u> shows the characteristics of SWS signal when it is active. It starts with a 1 ms pulse, followed 600 μ s later by a 600 μ s pulse. This waveform is repeated every 4 ms. When inactive, the SWS is 0V.

Figure 21 - SWS Waveform

Notes:

Configuration

Logic Switch Setting

The Logic switch determines the operating function of the GLT safety relay and is used to set the configuration. If only the Range or Time setting must be changed, the configuration process must start by setting the Logic switch to 0 or 9 when power is off.

Table 2 - Logic Switch Setting

Switch 1 Setting	Lock/ Unlock Demand Configuration	Delay Configuration	Safety Inputs		
0	Program mode (Pulse testing is activated on terminals 14, 24, 51, and L61				
9	Program mode (Pulse testing is d	leactivated on terminals 14, 24, 51,	and L61		
Function 1	- Guard Locking Applications				
1	Manual monitored	Cat. 0 Stop.	Logic IN OR IN1		
2		14, 24, L11, Y32 immediate OFF 51, L61 delayed ON	Logic IN AND IN1		
3		Cat. 1 Stop	Logic IN OR IN1		
4		14, 24, L11 delayed OFF 51, L61 delayed ON Y32 immediate OFF	Logic IN AND IN1		
Function 2	- E-stop Applications				
5	Manual monitored	14, 24, L11, Y32 immediate OFF	Logic IN OFF OR IN1		
6		51, L61 delayed OFF	Logic IN AND IN1		
7	Auto reset	14, 24, L11, Y32 immediate OFF	Logic IN OFF OR IN1		
8		51, L61 delayed OFF	Logic IN AND IN1		

ATTENTION: When the GLT safety relay is configured for settings 5 or 7 and an E-stop device is connected to IN1, there must be no connection to the Logic IN (terminal L12). E-stops must always be available and cannot be bypassed or muted with 'OR' logic.

Range Switch Setting

The Range switch sets the maximum time for the delay. The Time switch setting adjusts the range.

Table 3 - Range Switch Setting

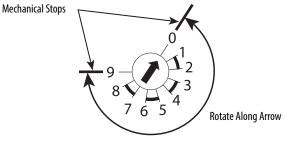
Range Switch Setting	Maximum Delay Time	Range Switch Setting	Maximum Delay Time
0	0.5 s without 10% ⁽¹⁾	5	30 s
1	1 s	6	1 min
2	3 s	7	3 min
3	5 s	8	10 min
4	10 s	9	30 min

(1) To use the Range setting of zero, the Time setting must be set to something other than 1.

Time Switch Setting

The Time switch sets the adjustment to the Range switch.

Table 4 - Time Switch Setting


Time Switch Setting	Delay Adjustment (%)	Time Switch Setting	Delay Adjustment (%)
1	10	б	60
2	20	7	70
3	30	8	80
4	40	9	90
5	50	10	100

EXAMPLE With the Range and Time set to 4, the delay is: 10 seconds x 40% / 100 = 4 seconds

Configuration Switches

Use a small slotted screwdriver to set the switches to the desired setting. The configuration switches are multi-position switches with a limited rotation.

Figure 22 - Configuration Switch Adjustment

IMPORTANT Adjust the switches gently and do not turn past the mechanical stops.

Configuration Process

Configuration is a five-step process. The process requires the wiring to the GLT safety relay to be completed. During the configuration process, the GLT safety relay sends out test pulses to determine how it is wired and then configures the internal parameters to match the application.

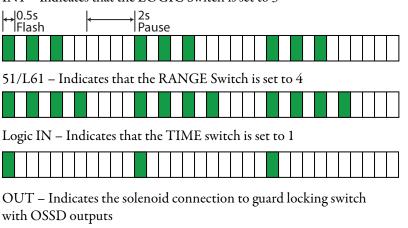
Five Step Configuration

The GLT safety relay is configured in five steps:

- 1. With the power OFF, set the Logic switch to either 0 or 9.
- 2. Apply power.
- 3. Adjust the Logic, Range, and Time switches.
- 4. Verify the settings by counting the blink rates of the status indicators.
- 5. Cycle the power to store the settings.

Configuration Details

- The GLT safety relay sends out signals during the configuration process, so the wiring must be complete. Set the Logic switch to:
 - 0 if you want to activate pulse testing on terminals 14 and 24
 - 9 if you want to deactivate pulse testing.
- 2. Power up the module.


The PWR/Fault status indicator flashes red continuously. The prior configuration in the EEPROM is erased and the device now prepared for a new configuration.

- Set the Logic, Range, and Time switch settings for your application. After 500 ms, the new configuration parameters are acknowledged. After 300 ms, the new parameter is stored in the EEPROM, the Power status indicator is solid green.
 - **TIP** You can change (or readjust) the switch settings during Step 3 and 4. The Power status indicator flashes red again, momentarily.
- 4. Verify the settings

The status indicators flash for 0.5 seconds to indicate the switch setting. The number of flashes is equal to the switch setting. The flashing repeats after a 2 second pause.

Figure 23 - Example of the Status Indicators Flashing During Configuration Mode:

IN1 – Indicates that the LOGIC Switch is set to 3

5. Cycle the power to the GLT safety relay. After power-up, the current switch settings are compared to the values in the EEPROM, and the input and output circuits are checked. Upon successful completion of the internal checks, the GLT safety relay is ready for operation.

The OUT status indicator indicates the type of connection that is made to terminals 51 and L61. <u>Table 5</u> shows the conditions for the OUT status indicator blink rates.

Table 5 - OUT Status Indicator Blink Rates

OUT Status Indicator Blinks	Guard Locking Switch	51	L61	Guard Locking Function	E-stop Function
1 time	OSSD guard locking switch (for example, TLS-ZR or 440G-LZ) or E-stop function	High Side	High Side	Yes	Yes
2 times	Standard guard locking switch (for example, TLS3-GD2)	High Side	Low Side	Yes	No
3 times	Next generation guard locking switch	No Function	Logic Link	Yes	No

Diagnostic Status Indicators and Troubleshooting

The GLT safety relay has five status indicators to provide operating status and diagnostic information.

Status Indicators During Powerup

Status Indicators During Normal Operation

check process. The self-check takes about 3 seconds.

During powerup, the status indicators turn ON and OFF during their self-

Table 6 - Normal Operation Status Indicators

Status Indicator	State	Description
PWR/FAULT	Solid Green	Normal operation
	Blinking Red	See <u>Status Indicators During Diagnostics</u> for possible faults. Correct fault and cycle power
	Green with Blinking Red	See <u>Status Indicators During Diagnostics</u> for possible faults. Correct fault and press reset
IN	ON	Input circuits at S12 and S22 are closed
	OFF	Input circuits at S12 and S22 are open
51/L61 ON		Gate is locked
	OFF	Gate is unlocked
	Blinking	Timing cycle has started
LOGIC IN	ON	Logic IN signal at L12 is active
	OFF	Logic IN signal at L12 is OFF
OUT ON		L11 is active and 14/24 are ON Y32 is ON
	OFF	Outputs are OFF
	Blinking	Waiting for reset signal or timing cycle has started

Status Indicators During Diagnostics

The flashing of the status indicators indicate diagnostics. The PWR/Fault status indicator shows the major fault. The IN1 status indicator shows more detail.

The flashing rate pauses and then repeats itself.

IMPORTANT For accurate diagnostics, always start counting after the first pause. The first cycle is not accurate.

Table 7 - Diagnostic Status Indicators

Power/Status Status Indicator	Status/Faults
Solid red	An undeclared fault has occurred.
	Cycle power to clear the fault and return the GLT to an operational state.
Flashing red 1 time	The GLT safety relay is in configuration mode. When the Logic Switch is set to 0 or 9 and the power is cycled, the PWR/Fault status indicator blinks at a 1X rate. The GLT safety relay is in configuration mode. Rotate the switches to the desired positions and cycle power.
Green with flashing red 2 times	The configuration does not agree with the EPROM. One or more of the rotary switches have changed during operation. The GLT safety relay continues to operate, and the switches can be returned to their original position. If the outputs are ON, turn the outputs OFF and press reset to clear the fault.
Green with flashing red 3 times	A lock/reset request was made, but the safety gate is still open. Close the gate. Press the Unlock button to clear the fault. Then, press the Lock/ Reset button to turn on the output. The connection to terminal B2 has changed. The GLT safety relay continues to operate, and the connection can return to its
Green with flashing red 4 times	original status. If the outputs are ON, turn the outputs OFF and press reset to clear the fault. The safety inputs, or the SWS input, were closed before the delay time expired. Open the safety input for the entire time cycle. Or connect B2 to 24V and
Green with flashing red 5 times	reconfigure the GLT safety relay for retriggerable inputs. The gate appears open when it supposed to be closed and locked. The IN1 indicator is OFF - input signals are corrupt. The 51/L61 indicator is ON - gate should be locked. Possible fault conditions: • Gate is open • Open circuit on S12 • Open circuit on S22 • Short from S12 to S22 • Short from S12 to S22 to +24V DC • Short from S12 or S22 to 24V Common. Check the voltage at terminals S12 and S22. Both should have 24V DC. Correct the fault. Press Reset to clear the flashing red indication. Press Reset again to turn the outputs ON. Cycle both input signals (or cycle power) to return the GLT
Flashing red 2 times	safety relay to an operational state. Upon power-up, one or more of the rotary switch settings do not agree the value that is stored in the EEPROM. Return the switches to their originally configured settings and cycle power or reconfigure the GLT safety relay.
Flashing red 5 times	 IN1 is flashing 12 times. Short circuit fault on terminal L11 to 24V. Short circuit fault on terminal L11 to ground. With OSSD guard locking or E-stop function Short circuit fault on terminal 51 to ground. Correct the fault and cycle power to the GLT safety relay.

Power/Status Status Indicator	Status/Faults
Flashing red 6 times	 IN1 is flashing 7 times Short circuit fault on terminal 14 to ground or Short circuit fault on terminal 24 to 24V with pulse testing IN1 is flashing 8 times Short circuit fault on terminal 24 to ground or Short circuit fault on terminal 24 to 24V with pulse testing or Short circuit fault from terminal 14 to terminal 24 with pulse testing. Correct the fault and cycle power to the GLT safety relay.
Flashing red 9 times	 IN1 is flashing 9 times Short circuit from terminal 51 to L61 Open circuit on terminal 51 or L61 IN1 is flashing 10 times Short circuit fault on terminal 51 or L61 to ground or Short circuit fault on terminal 51 or L61 to 24V. Correct the fault and cycle the power to the GLT safety relay.
Flashing red 10 times	IN1 is flashing 33 times • The supply voltage exceeded 26.4V DC - Overvoltage Correct the power supply and cycle the power.

Additional Diagnostics

The IN1 status indicator flashes additional information regarding faults that the GLT safety relay detects. <u>Table 8</u> provides a description of the fault for each of the flash rates. You must inspect wiring, measure the voltages/waveforms at the respective terminals, check the configuration switches, and if necessary, report the fault to the factory.

Table 8 - Flash Rate Fault Description

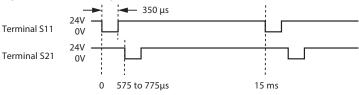
Flashes	Description
0	No fault
5	S11 pulse test fault
6	S21 pulse test fault
7	OSSD1 fault (terminal 14)
8	OSSD2 fault (terminal 24)
9	Terminal L61
10	Terminal 51
11	SPI fault
12	L11 fault
13	Guard locking system differs from EPROM
14	Configuration switches differ from EPROM
15	EPROM fault
17	Compare state fault
22	Cross fault
23	Wiring at B2 differs from EPROM
24	Input is open when gate is locked
25	Switch overflow
30	S12 fault
31	S22 fault
32	Main transistor fault
33	Overvoltage
34	S44 or S54 fault

Notes:

Pulse Testing Functions

Pulse Testing for Inputs

Pulse testing for the inputs is always active. The pulses are generated at terminals S11 and S21. These test pulses must be used with devices that have mechanical contacts.

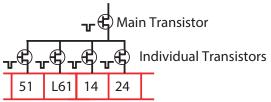

S11 is typically connected to one contact and the other side of the contact is connected to S12. S21 is typically connected to the second contact, and the other side of the second contact is connected to S22.

The test pulses are used by the GLT safety relay to detect three short circuit conditions:

- 1. Between the input terminals and +24V
- 2. Between the input terminals and 24V common
- 3. Between the two input terminals

<u>Figure 24</u> shows the timings of the two test pulses. The pulse on S21 occurs shortly after S11. The pulses are repeated every 15 ms.

Figure 24 - Pulse Test Signals



Pulse Testing of Outputs

When the GLT safety relay configuration process starts from Logic Switch setting 0, the 14, 24, 51, and L61 outputs are pulse tested. The purpose of the pulse testing is to detect short circuits to 24V, to 24V common, and short circuits between the output terminals. The use of pulse testing allows the GLT safety relay to be used in PLe and SIL 3 applications. Without pulse testing, the GLT safety relay can only be used in applications up to PLd and SIL 2.

The outputs have built in redundancy. A main transistor supplies power to individual transistors for each output terminal as shown in <u>Figure 25</u>.

Figure 25 - Output Transistor Arrangement

When pulse testing is configured (start with Logic Setting 0), the main transistor tests the outputs, which are then tested individually. The main transistor test pulse is 50 μ s wide. The pulse width on terminals 14 and 24 is 350 μ s wide, and the pulse width on terminals 51 and L61 is 200 μ s wide.

Figure 26 - Output Pulse Test Width

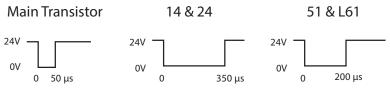


Figure 27...Figure 29 show the pulse test pattern. This pattern depends on the GLT safety relay configuration and its state. Figure 27 shows the pulse pattern for E-stop configurations. The pattern is repeated every 3750 ms.

Figure 27 - Output Pulse Test Pattern for E-stop Functions

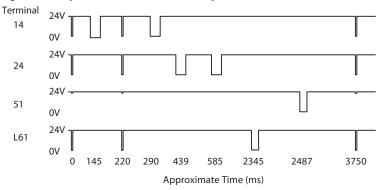


Figure 28 shows the pulse test pattern on 51 and L61 when the GLT safety relay is configured as two high side outputs. The pattern is repeated every 2639 ms.

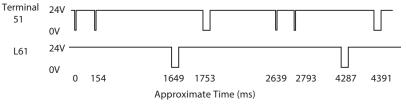
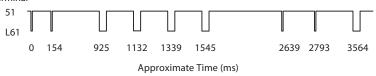



Figure 29 shows the pulse test pattern on 51 and L61 when the GLT safety relay is configured as a high side/low side outputs. Terminal 51 is referenced to L61, not 24V common. The pattern is repeated every 2639 ms.

Figure 29 - Output Pulse Test Pattern for High/Low Side Guard Locking Terminal

Specifications

General

Attribute	440R-GL2S2T
Dimensions, W x H x D	22.5 x 119.14 x 113.6 mm (0.88 x 4.69 x 4.47 in.)
Shipping Weight, approx.	150 g (0.33 lb)
Wire Size	0.22.5 mm ² (2414 AWG)
Wiring Category	Copper that withstands 75 °C (167 °F)
Terminal Screw Torque	0.4 N•m (4 lb•in)
Power Supply Voltage Range	24V DC PELV/SELV 0.851.1 x rated voltage
Power Consumption	2 W
Fuse	4 A gG (slow blow)
Case Material	Polyamide PA 6.6
Terminal Protection	IP20
Enclosure Protection	IP40 (NEMA 1)

Environmental

Attribute	440R-GL2S2T
Operating Temperature	-5+55 °C (23131 °F)
Relative Humidity	90%
Vibration	1055 Hz, 0.35 mm
Shock	10 g, 16 ms
Pollution Level	2

Inputs IN1

Attribute	440R-GL2S2T
Input Signals (Active High)	S12, S22
Input Simultaneity	Infinite
ON Voltage, Max	26.4V
ON Voltage, Min	11V
OFF Voltage, Max	5V
OFF Current, Max	2 mA
ON Current at 24V DC, Max	11 mA
ON Current at 26.4V DC, Max	11.1 mA
Galvanic Isolation: I/O from Logic	No
Overvoltage Protection	Yes
Test Out Pulse Duration	700 µs
Test Out Pulse Period	17 ms
Off Pulse accepted for OSSD setting without declaring the input as OFF	$ \begin{aligned} \text{Min} &= 0 \ \mu \text{s} \\ \text{Max} &= 700 \ \mu \text{s} \end{aligned} $
Reverse Voltage Protection	Yes
Input Capacitance	10 nF

Lock Unlock Request

Attribute	440R-GL2S2T
Input Signals (Active High)	S44, S54
ON Voltage, Max	26.4V
ON Voltage, Min	11V
OFF Voltage, Max	5V
OFF Current, Max	2 mA
ON Current at 24V DC, Max	11 mA
ON Current at 26.4V DC, Max	11.1 mA
Galvanic Isolation: I/O from Logic	No
Overvoltage Protection	Yes
Input Capacitance	10 nF
Duration	0.53.0 s

Retrigger

Attribute	440R-GL2S2T
Input Signal (Active High)	B2
ON Voltage, Max	26.4V
ON Voltage, Min	11V
OFF Voltage, Max	5V
OFF Current, Max	2 mA
ON Current at 24V DC, Max	11 mA
ON Current at 26.4V DC, Max	11.1 mA
Galvanic Isolation: I/O from Logic	No
Overvoltage Protection	Yes
Input Capacitance	10 nF

Outputs

Attribute	440R-GL252T
Number of Outputs	4
Output Signals (Active High)	S11, S21, 14, and 24
Continuous Output Current	0.5 A
Aggregate Current of Outputs per Module, Max	1.8 A
Surge Output Current, Max	1.5 A
Surge Output Current Duration, Max	5 ms
Residual Voltage (Drop from Power Supply), Max	0.2V
Max Load Capacitance	1 μF
Off State Leakage Current, Max	< 0.1 mA
Short Circuit Protection	Yes
Galvanic Isolation: I/O from Logic	No
Pulse Test Duration	≤700 μs
Pulse Test Period	\leq 13000 ms (less than 15 s)
Maximum Resistance for the Auto Detection of a Coil	10k
Maximum Resistance for the Auto Detection of an LL Device	10k

Lock Unlock Signals

Attribute	440R-GL252T
Output Signals	51 & L61
Continuous Output Current, Max	0.3 A
High Side Voltage, Max	26.4V
High Side Voltage, Min	15V
Low Side Voltage, Max	3V
Surge Output Current, Max	3 A
Surge Output Current Duration, Max	10 µs
Load Capacitance, Max	1μF
Off State Leakage Current, Max	< 0.1 mA
Short Circuit Protection	Yes

Auxiliary Signal

Attribute	440R-GL2S2T
Output Signals	Y32
Continuous Output Current, Max	50 mA
ON State Voltage Drop (P/S to +), Max	0.2V
Surge Output Current, Max	700 mA
Surge Output Current Duration, Max	5 ms
Load Capacitance, Max	-
Off State Leakage Current, Max	< 0.1 mA
Short Circuit Detection	No
Short Circuit Protection	Yes
Galvanic Isolation: I/O from Logic	No

Single Wire Safety Input Signal

Attribute	440R-GL2S2T
Input Signals	L12
ON Voltage, Max	26.4V
ON Voltage, Min	11V
OFF Voltage, Max	5V
OFF Current, Max	2 mA
ON Current at 24V DC, Max	11 mA
ON Current at 26.4V DC, Max	11.1 mA
Galvanic Isolation: I/O from Logic	No
Overvoltage Protection	Yes
Reverse Voltage Protection	Yes
Input Capacitance	10 nF

Single Wire Safety Output Signal

Attribute	440R-GL2S2T
Output Signals	L11
Continuous Output Current, Max	50 mA
ON State Voltage Drop (P/S to +), Max	0.2V
Surge Output Current, Max	700 mA
Surge Output Current Duration, Max	5 ms
Max Load Capacitance	1μF
Off State Leakage Current, Max	< 0.1 mA
Short Circuit Detection	No
Short Circuit Protection	Yes
Galvanic Isolation: I/O from Logic	No

Recovery Times

	Logic 14			Logic 58		
	14, 24	L11	Cat 1 Y32	14, 4	L11	Cat1 Y32
Reset (S44)	26 ms	26 ms	23 ms	27 ms	28 ms	25 ms

Response Times

	Logic 14			Logic 58		
	14, 24	L11	Cat 1 Y32	14, 4	L11	Cat1 Y32
Unlock Request (S54)	32 ms	27 ms	32 ms	_	_	—
Single Wire Safety Input, L12	48 ms	48 ms	49 ms	37 ms	35 ms	38 ms
Safety Inputs (S12, S22)	68 ms	61 ms	70 ms	55 ms	51 ms	57 ms

Notes:

Regulatory Approvals

Agency Certifications

Compliance to European Union Directives

• UL Listed Industrial Control Equipment, which is certified for US and Canada.

- CE marked for all applicable directives
- C-Tick marked for all applicable acts
- CCC Mark
- S-Mark

This product has the CE marking and is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

Machine Safety Directive

This product is designed and tested to meet the European Council Directive 2006/42/EC on machinery and the following standards.

- IEC/EN 61508 Functional safety of electrical/electronic/ programmable electronic safety-related systems
- IEC/EN 62061 Safety of machinery Functional safety of safetyrelated electrical, electronic, and programmable electronic control systems
- EN ISO 13849-1 Safety of machinery -- Safety-related parts of control systems -- Part 1: General principles for design.

This product is intended for use in an industrial environment.

The performance of the safety function is dependent on the structure of all devices that comprise the safety function. The following two tables provide the data that must be used to represent the GLT when calculating the safety integrity level (SIL) or the Performance Level (PL).

SIL Rating

The GLT safety relay can be used in applications up to SIL 3 in accordance with IEC 61508 and IEC 62061.

Safety Integrity Level Claim Limit	3
PFD	1.43 E-3
PFH	8.11 E-9
Mode of Operation	High demand
Hardware Fault Tolerance	1
Safe Failure Fraction	99%

Performance Level/Category

The GLT safety relay can be used in safety systems that meet up to Category 4 and Performance Level PLe in accordance with ISO 13849-1.

Category	Up to 4
Performance Level	Up to e
MTTFd	352
DC Avg	99%
Mission Time (a)	20
Days of Operation (d)	365
Hours of Operation (h)	24
t Cycle (h/s)	8/28.8

EMC Directive

This product is designed and tested to meet the European Council Directive 2004/108/EC on Electromagnetic Compatibility (EMC) and the following standards:

- EN 61000-6-4: Generic Standards Emission Standard for Industrial Environments
- EN 61000-6-2: Generic Standards Immunity for Industrial Environments

This product is intended for use in an industrial environment.

A

agency certification 41 approvals regulatory 41 assignment terminal 14 auxiliary signal specifications 38

C

certification agency 41 compliance European Union directives 41 configuration 25 connect power supply 15 connection single wire safety (SWS) 22 consideration enclosure 10 controller ground 14

D

definitions 6 devices safety 16 diagnostic status indicator 29 diagnostics additional 31 status indicator 30 dimensions mounting 9 DIN Rail dismounting 9 mounting 9 directive EMC 42 dismounting DIN Rail 9

Ε

EMC directive 42 enclosure consideration 10 environmental specifications 35 E-stop function 8 European Union directives compliance 41 excessive heat prevent 11

F

features hardware 7 function 7 1-guard locking 7 2-E-stop 8 pulse testing 33 single wire safety (SWS) 22

G

general specifications 35 ground 13 controller 14 guard locking function 7

H

hardware features 7 heat prevent excessive 11

input lock and reset request 18 pulse testing 33 retriggerable 19 unlock request 18 inputs IN1 specifications 36 installation 9

L

lock signal 19 lock and reset request input 18 lock unlock request specifications 36 lock unlock signals specifications 38

М

machine safety directive 41 mechanical contacts safety devices 16 mounting dimensions 9 DIN Rail 9

Ν

normal operation status indicator 29 normally closed 6 normally open 6

0

OSSD 6 OSSD outputs safety devices 17 output 20 pulse testing 33 specifications 37 output signal switching device 6 overview 7

Ρ

performance level/category 42 power 13 power supply connect 15 power-up status indicator 29 prevent excessive heat 11 pulse testing function 33 input 33 output 33

R

rating SIL 42 reaction time 6 recommendation wire 13 recovery time 6 specifications 39 regulatory approvals 41 removable terminal 10 requirement wire 13 response time 6 specifications 39 retrigger specifications 37 retriggerable input 19

S

safety single wire 21 safety devices 16 mechanical contacts 16 OSSD outputs 17 signal lock 19 unlock 19 SIL rating 42 single wire safety 6, 21 connection 22 function 22 input signal 38 output signal 39 size wire 13 specifications 35 auxiliary signal 38 environmental 35 general 35 inputs IN1 36 lock unlock request 36 lock unlock signals 38 output 37 recovery time 39 response time 39 retrigger 37 single wire safety input signal 38 single wire safety output signal 39 status indicator diagnostic 29 diagnostics 30 normal operation 29 power-up 29 troubleshooting 29 surge suppressors 21 SWS. See single wire safety

Т

terminal assignment 14 removable 10 torque 13 torque terminal 13 troubleshooting status indicator 29

U

unlock signal 19 unlock request input 18 use surge suppressors 21

W

wire 13 recommendation 13 requirement 13 size 13

Rockwell Automation Support

Use the following resources to access support information.

Technical Support Center	Knowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates.	https://rockwellautomation.custhelp.com/
Local Technical Support Phone Numbers	Locate the phone number for your country.	http://www.rockwellautomation.com/global/support/get-support-now.page
Direct Dial Codes	Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.	http://www.rockwellautomation.com/global/support/direct-dial.page
Literature Library	Installation Instructions, Manuals, Brochures, and Technical Data.	http://www.rockwellautomation.com/global/literature-library/overview.page
Product Compatibility and Download Center (PCDC)	Get help determining how products interact, check features and capabilities, and find associated firmware.	http://www.rockwellautomation.com/global/support/pcdc.page

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf.

Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page.

Allen-Bradley, Rockwell Automation, and Rockwell Software are trademarks of Rockwell Automation, Inc. Trademarks not belonging to Rockwell Automation are property of their respective companies.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846